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ABSTRACT: Fukuyama reduction of thioesters has been
achieved using a polymer-supported Pd[0] catalyst (Pd/XAD-
4), and continuous flow conditions. The generality of this
reaction is good with a range of aldehydes prepared in
excellent yields. In addition, an integrated multistep
thioesterfication/Fukuyama reduction has been developed
that allows acyl chlorides to be directly converted to the
corresponding aldehydes. Integral to this process is the use of polymer-supported amine and isocyanate reagents to achieve
thioesterification and scavenge unreacted thiol. In addition, catch-and-release purification has been employed to enable isolation
of the aldehyde from silylthioether byproducts without the need for chromatographic purification.
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The manipulation of oxidation state is a necessary aspect of
chemical synthesis. Ideally, this is married to key bond-

forming events; however, in many contexts, isolated functional
group oxidation state changes are unavoidable.1 This is evident
with the carbonyl group and, as a consequence, numerous
techniques for reduction and oxidation of carbonyls are
known.2

Catalytic oxidations and reductions have the capacity to
enhance efficiency and have received significant attention. The
Fukuyama reduction is a valuable Pd-catalyzed transformation
for the conversion of thioesters (i.e., 1) to aldehydes (i.e., 2)
without overreduction to the alcohol (Scheme 1).3,4 The

selective reduction of carboxylic acids and esters to aldehydes
can be a challenge, with commonly used metal hydride reagents
complicated by issues of chemoselectivity, and the requirement
for cryogenic conditions.5 Although recent studies from
Jamison have examined the utility of continuous flow
approaches with the DiBAL-H reduction,6b this elegant
procedure remains constrained by the inherent chemo-
selectivity of aluminum hydride reagents.6 For example,
chemoselective reductions of substrates bearing keto or

aldehyde functionality is rarely possible. Although the
Fukuyama reduction displays desirable chemoselectivity,
particularly with respect to carbonyl functionality, its uptake
has been limited by a number of factors. These include the use
of odorous thiols, with first-generation approaches,3,4 its
multistep nature, requiring first preparation of the thioester,
and issues associated with purification when using higher
boiling odorless thiols.7,8

As part of our studies on the discovery of novel catalysts9 and
technologies10 to address challenges in chemical synthesis, we
recently investigated the application of continuous flow
techniques to the reduction of carboxylic acid substrates (i.e.,
thioester 1 and acyl chloride 3) to aldehydes (i.e., 2) using the
Fukuyama reduction.11 Continuous flow techniques have a
number of features that we considered potentially adventitious
with respect to the Fukuyama reduction.12,13 In particular, the
capacity to develop multistep strategies,14 thereby avoiding the
isolation of undesirable intermediates (i.e., thioester 1), and the
application of inline purification approaches. In addition, it was
envisaged that the linear scalability of continuous flow
processes might allow methods with broad applicability to be
developed. Herein, we report our studies on this topic that have
led to the development of a continuous flow Fukuyama
reduction (1 → 2) and integrated thioesterification/Fukuyama
reduction (3 → 2).
Studies commenced with the identification of a suitable

polymer-supported palladium source to serve as the heteroge-
neous catalyst for the reduction.15 Initial studies with Pd
monoliths gave promising results;16 however, it was found that
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Pd/XAD-4 gave similar outcomes, and was significantly simpler
to prepare.17 TEM analysis of this catalyst was undertaken,
indicating the presence of palladium nanoparticles with 2−10
nm particle size, consistent with previous preparations (Figure
1).17 In addition, inductively coupled plasma atomic emission
spectroscopy (ICP-AES) allowed the palladium composition to
be determined (0.92 wt % Pd).

Development of a continuous flow Fukuyama reduction was
undertaken with Cbz-protected phenylalanine thioester 1a
(Table 1). This substrate has been applied to the odorless

variant of the traditional Fukuyama reduction,3,4,7 hence
facilitating direct comparison to existing methods. All reactions
were performed on a commercially available flow chemistry
synthesis platform or a bespoke flow device comprising a
tubular (PTFE) reactor. Optimization commenced with
examination of the solvent. Although acetonitrile gave a modest
isolated yield of aldehyde 2a (Table 1, entry 1), CH2Cl2, THF,
acetone, and dioxane gave the product in good to excellent
yield (Table 1, entries 2−5), with THF providing 2a in the
highest isolated yield (Table 1, entry 3). When the
stoichiometry of Et3SiH was reduced, the reaction failed to
reach completion. Next, residence times were varied from 15 to
180 min (Table 1, entries 6−8), with 60 min proving optimal.
Finally, the recyclability of the column was investigated using

the optimal conditions. The yield of 2a was determined after
each run over ten experiments, with no significant decrease
observed (Table 1, entries 3 cf. 9 and 10). Reanalysis of the
used column by ICP-AES allowed palladium composition to be
determined and the degree of leaching ascertained. The used
column contains 0.87 wt % Pd, indicating around 0.54%
leaching per run. Finally, the enantiopurity of 2a was
determined using HPLC over chiral stationary phases,
demonstrating negligible racemization, with the aldehyde
isolated in 99% enantiomeric excess.
Using a single Pd/XAD-4 column, the generality of the

Fukuyama reduction was investigated with aromatic and
aliphatic thioesters (Table 2). Benzoic acid-derived thioester

1b and electron-rich thioester 1c were reduced in excellent
yields to aldehydes 2b and c, while the electron-poor p-
nitrobenzaldehyde (2d) formed in modest yield, accompanied
by a variety of materials, presumably from reductions about the
nitro group. In contrast, the para-chloro substituent (i.e., 1e),
significantly retarded the reaction, with <10% of the expected
aldehyde formed as a mixture with unreacted starting material.
When this reaction was attempted using reported batch
conditions,7 no conversion of the thioester was observed.
Next, thioesters bearing coordinating functionality were
examined, with 3-thiophene aldehyde 2f formed in 87% yield,
and 2-picolinic acid-derived thioester (i.e., 1g) providing the
corresponding aldehyde 2g in modest yield. Reduction of
dithioester 1h could be achieved, providing dialdehyde 2h in
89% yield, whereas the cinnamic acid thioester 1i and α,β-
unsaturated furyl thioester 1j were reduced chemoselectively to
provide aldehydes 2i and 2j in good yield. Surprisingly
annulation about the α,β-unsaturated thio esters was not
tolerated, with cyclopentenal 2k formed in trace quantities.
Benzylic thioesters were reduced smoothly, providing 2l and m,
in 93 and 66% yield respectively, while the aliphatic dithioester
1n was reduced to dialdehyde 2n in 83% yield. The reaction
shows good functional group tolerance with amino acid

Figure 1. TEM images of Pd particles on Amberlite XAD-4.
Accelerating voltage 200 kV utilizing LaB6 thermal emitter.

Table 1. Continuous Flow Fukuyama Reduction of Thioester
1a

entry solvent residence time run % yield 2aa

1 CH3CN 60 42
2 CH2Cl2 60 71
3 THF 60 96
4 Acetone 60 80
5 Dioxane 60 80
6 THF 15 53
7 THF 30 78
8 THF 180 96
9 THF 60 5 90b

10 THF 60 10 91b

aIsolated yield following column chromatography. bconversion as
determined by 1H NMR analysis.

Table 2. Scope of the Continuous Flow Fukuyama
Reduction

aIsolated yield following column chromatography.
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derivatives and ketone containing substrates, reduced smoothly
to afford aldehydes 2a, o, and p in 96, 96, and 94% yield,
respectively. This highlights the utility of the procedure, which
allows the synthesis of aldehydes inaccessible using DiBAL-H
reductions (i.e., 2o and 2p). Finally, thiocarbamates proved to
be poor substrates for the reduction, with 2q isolated in modest
yield, while the aliphatic variant (i.e., 2r) failed to form.
Having realized the continuous flow Fukuyama reduction,

attention was directed to the multistep conversion of acyl
chlorides to aldehydes via the thioester.14 To achieve this
transformation, three polymer-supported amine bases, tris(2-
aminoethylamine) 4, aminomethyl 5, and Amberlyst A21 6,
were trialed using benzoyl chloride 3b and dodecanethiol as
substrates (Table 3, entries 1−3). Using Amberlyst A21, the
expected product (1b) was formed in quantitative yield (Table
2, entry 3). The generality of this reaction was examined with
electron-rich benzoyl chloride 3c (Table 3, entry 4), electron-
poor benzoyl chloride 3d (Table 3, entry 5), cinnamoyl
chloride 3i (Table 3, entry 6), and carbamoyl chloride 3q
(Table 3, entry 7), all giving the expected thioesters in excellent
yield.
An integrated multistep thioesterification/Fukuyama reduc-

tion was trialed by linking the supported catalysts discussed
previously and exploiting the optimized conditions (Table 1,
entry 3 and Table 3, entry 3). Unfortunately, it was only
possible to isolate benzaldehyde (2b) in 45% yield (Scheme 2).
It was proposed that this was a consequence of thiol poisoning
of the catalyst. Consistent with this was the observation that
decreasing the Pd loading to 1 mol % decreased the yield
further, while increasing the loading allowed quantitative
conversion.

To allow more efficient conditions to be developed,
particularly ones that did not lead to destruction of the
previously reusable Pd/XAD-4 catalyst, studies were directed
toward a continuous flow system in which unreacted thiols are
scavenged. In addition to removing unreacted thiol, we took
this opportunity to examine the purification of the aldehyde
product. The Fukuyama reaction is known to be plagued by
issues associated with the separation of the aldehyde from the
silythioether, particularly when working with high molecular
weight odorless thiols.7,8 Although chromatographic ap-
proaches and derivatization studies have been developed to
address this challenge, we envisaged an inline catch-and-release
strategy18 to allow the aldehyde to be purified more efficiently.
In addition, although Pd leaching was moderate, it was decided
to also introduce a palladium scavenger to the system.
A number of thiol scavenger resins were trialed under batch

conditions. Eventually, it was found that polymer-supported
isocyanate 7 in the presence of triethyl amine allowed rapid
consumption of free thiol. Thus, following the Amberlyst A21
(6) column, an isocyanate column was introduced along with a
stream of Et3N (Table 4) to allow unreacted thiol to be
removed. The use of Quadrapure IDA resin to remove trace
metals is established,19 and was introduced following the Pd/
XAD-4 column. Finally, after optimization, it was found that
primary amine resin 4 at 60 °C led to complete sequestration of
the aldehyde. The immobilized imine product could then be
released by exposure to a mixture of formic acid, methanol, and
water. Application of these conditions in an integrated
continuous flow system was then examined exploiting a range
of acyl chlorides. This system gave outcomes similar to that of
the isolated Fukuyama reduction (Table 2). Thus, benzoyl
chlorides 3b, c, and h gave aldehydes (i.e., 2b and c) and
dialdehyde 2h in excellent yields, as did cinnamoyl chloride
(3i). Similarly, aliphatic acyl chlorides 3l, m, and p reacted
smoothly to give the expected aldehydes (Table 4). When the
reduction of activated phenylalanine was examined, the
expected aldehyde 2a formed in 94% yield. Unfortunately,
the enantiopurity of this compound was compromised, with the
catch/release protocol shown to lead to erosion in optical
purity.20 In all cases, yields were comparable to those achieved
when performing the thioesterification and Fukuyama reduc-
tion as discrete steps. Although the system is reusable and one
series of columns was used for all experiments, regeneration of

Table 3. Continuous Flow Thioesterification

entry resin equiv acid chloride % yield 1a

1 tris(2-aminoethyl)amine 4 1.5 PhCOCl (3b) 47
2 aminomethyl 5 3.5−5 PhCOCl (3b) 40
3 Amberlyst A21 (6) 7.6 PhCOCl (3b) 99
4 Amberlyst A21 (6) 7.6 p(MeO)C6H4COCl (3c) 96
5 Amberlyst A21 (6) 7.6 pNO2C6H4COCl (3d) 98
6 Amberlyst A21 (6) 7.6 PhCHCHCOCl (3i) 91
7 Amberlyst A21 (6) 7.6 Ph2NCOCl (3q) 99

aIsolated yield following column chromatography.

Scheme 2. Multistep Thioesterification/Fukuyama
Reduction of 3b without Scavengers
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columns 1, 2, and 5 was undertaken after each run using
standard washing techniques.21

Reduction of acid oxidation state substrates to the aldehyde
is a routine, but often challenging, transformation in organic
synthesis. As a consequence, overreduction to the alcohol, then
oxidation to the aldehyde, is often applied. Through our
studies, we have developed continuous flow strategies to
achieve the synthesis of aldehydes from either thioester starting
materials (i.e., 1) or acyl chlorides (i.e., 3) using the Fukuyama
reduction. Both approaches exploit immobilized catalysts that
are highly reusable, with a single system used for all scope
investigations. Pivotal to the success of these approaches has
been the development of continuous flow thioesterification,
thiol capture, and catch-and-release purification strategies.
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